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ABSTRACT

The Galerkin method is applied to Flugge’s differential equations for the vibration of a
cylindrical shell under axial load and external pressure io obtain a 3N x 3N characteristic
equation in matrix form. N is the number of terms in the assumed series of displacement
functions for the u, v, and w displacements which can be selected to satisfy various boundary
coaditions. For the freelv-supported cylinder, an exact solution exists, and the various
assumed modes uncouple reducing the problem to the solution of a 3 x 3 characteristic
cquation for each mode.

The third order characteristic equation for the freely-supported cylinder was solved for a
wide range of shell parameters. The natural vibration frequencies and buckling values for
axial load and external pressure for all three eigenvalues associated with each mode are
presented in a series of figures. The square of the vibration frequency for any mode was
found to vary lisearly with axial load, and approximately linearly with an external pressure
loading for modes with two or more circumfereatial waves.
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FOREWORD

This report was prepared by the Vehicle Dynamics Division, Air Force Flight Dynanucs
Laboratory, and represents an in-house eftort initiated under Project No. 1370 “‘Dynamic
Problems in Flight Vehicles,”” Task No. 137003, ‘‘Prediction and Prevention of Dynamic
Aerothermoelastic Instabilities.”’ The work was administered under the direction of the A1r
Force Flight Dynamics l.aboratory, Research and Technology Division, Air Force Systems
Command, Wright~Patterson Air Force Base, Ohio, with Capt. W, F. Bozich of the Aerospace
Dynamics Branch acting as Project Engineer.

This work was initiated in order to develop a better understanding of the dynamic behavior
of cylinders under initial stress. This investigation was conducted during the period June

1965 through August 1966. This report was released by the author for priblication as an RTD
Technical Report in August 1966,

This technicai report has been reviewed and is approved.

WALT 'TOW
Asst. for Research & Technology
Vehicle D;mamics Division
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Symbol

SYMBOCILS

Definition
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length of shell

differential cperator
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SECTION 1

INTRODUCTION

In recent years thin shells have been used extensively for aerospace applications because
of the high structural efficiency of this type of construction. Space capsules, boosters, space
stations, and large fuel tanks for hypersonic cruise vehicles are examples of stiffened and
unstiffened shell configurations. In many cases these shells are pressurized and subjected
to some type of loading. These loads and int>rnal pressure can have a significant effect on
the vibration characteristics. The purpose of tnis investigation is to examine the combined
effects of axial load and external pressurization on the vibration characteristics of thin
cylindrical shells and present the results in a suitable form for use in design.

Arnold and Warburton (References 1 and 2) examined the vibration characteristics of
freely-supported shells and plotted recults for several radius to thickness ratios. They in-
dicated that three natural frequencies exist for each modal pattern. The different frequencies
are associated with motions that are primarily radial, longitudinal, or torsional. The lowest
frequency is usually associated with motion whichis primarily radial. Forsberg (Reference 5)
obtained an exact solution for the cylindrical shell using Flugge's equations of motion with
various homogeneous boundary conditions. Fung (References 7, 8, and 10) obtained analytical
and experimental results for the effects of internal pressurization on the vibration character-
istics of cylindrical shells. Fung and Sechler (Reference 9) and Weingarten, Morgan, and
Seide (Reference 13) obtained results for the buckling of cylindrical shells subjected to in~
ternal pressurization and axial load. A recent paper by Herrmann and Shaw (Reference 11)
on the vibration of thin shells under initial stress included the change in magnitude and
direction of the applied load as a result of deformation and contains a comparison of
experimental daia witn various shell theories.

This investigation applies the Galerkin method to Flugge’s cylindrical shell equations to
formulate a characteristic equation valid for arbitrary boundary conditions. By selecting a
series of functions for :ach of the displacements u, v, and w various boundary cenditions ca.
be handled. For the special case of an unloaded, freely-supported cylinder, Arnold and
Warburton (Refererce 1) obtained an exact solution, This same solution was obtained by
Flugge (Referencs 4) for the buckling of a cylinder subjected to axial load and internal pres-
surization, and used by Herrmann (Reference 11) indicating that the same deflection mode
shape satisfies the combined problem. When a series of functions of this form were substituted
into the equations cbtained in this investigation, it is shown that the terms in the series un-
couple and Flugge’s buckling results are obtained if the frequency is assumed to be zero,
Vibration results comparable ‘o those of Arnold and Warburton are obtained if the load pa-
rameters are assumed to be zero,

For this gpecial case the axial load parameter and frequency parameter can be combined
into a single eigenvalue expression. The eigenvalue spectrum for this case is plotted in non-
dimensional form for a wide range of shell parameiers covering radial, longitudinal, and
axial deformation modes., From these charts and tables the critical buckling conditions or
vibration frequencies can be obtained for the freely-supported cylinder subjected to an axial
load anu external pressurization,




SECTICN I
THEOQORETICAL DEVELOPMUENT

The coordinate system used in the analysis is the same as that of Flugge axnd is given in
Figure 1, The equations of motion for thincylindrical shells including the effects of a uniform
normal pressure and an axial load can bz obtained by adding the inertia terms to Flugge’s
static equations given in Reference 4.

2 . 2 , .2 . 2
o2 dt;+ (i-v) 5u2 n {1+ . v + va ow +kl“ v 9 u
dx 2 a4 2 dx 9% dx 2 ¢’
Pw - 3w 8% dw o &
3 + P _ _ 2 YU .20 v o
x> 2 o a¢f} RANEY TP ATl
(1+) a%u v (-v) z 3% ow 3 2 d%v
+ : + +k | =—(1~v;
2 “xop L agE 2 ° Taxt i [Z - axZ
2 (3-1) 0w v dw z 9%y 2 v
- - r - - = 0
° T2 8,2 a¢] ! (a¢2 T Tag %% TakE 12 @
3 .3
va OY 4 v . .+ [(!—y) v -y (3-v) » 62v + o 'w
0 x 0 2 Ix I 3x3 2 <" d¢ ox*
q 4 2 2 2
2 Ow Ow 0w du Sv Ow 2 Fw ow
+20 2 +w ( + — + 2 0 (3!
POV A ] N4 ¢ 0¢2) 2 3EF Y 7 {
where
] n2 pa p 2 poz(l—vz)
k= 2 02 y ql - D qz' -'6— ' y E

The equations of motion can be written in the following matrix form

[L]{X}=0 {4

or

Ly L, L3 u
L2, L22 L23 v =0 (5!
Ly La; L3 w
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The differential operators Li]

by ~1.
3° (i-v) d° 2 9°
- n® — -
L,=~¢ {1 qz)—é-;7+[q' (i+k)] d¢2 +y 3.7
2
L.2:__(|+u)“ 2
2 ox 0¢
3 3 3 (I-v) 3>
Li3=-~o(v +ql)-é—; + ko _dx3 — k > a . 0¢>2
LTS R &
21 2 3x 0
oz [l=p) _ & a° 2
L,,m— o [—-2—-(l+3k) qz]? (i ql)-a—g—.é—-{'y—a—'-z—
d K(3-») 2 @
L= —{1—q, ) 4- " ——5—
2 -2 2 3." 3¢
i) k(l-v). g ko> 3>
Lay= o (v +q,) -
»7 TS, 2 0x0¢’ PPE
Lao=li~g ) —&— — K(3-v) o°d°
3¢ YT a¢g 2 Ix 9
4.4 2 4 4 2 3
L33=‘+k[ﬂa +20207 + d‘ 20_2__’_"‘
ax?  d<o¢’ ¢ ¢
2 2 aZ 2 aZ

+y

N
tag? 20 TR 1%

can be writien as follows after multiplying kquations 1 and 2

(6)

(7)

(8)

{9)

{10)

{11)

(12)

114)

To obtain a solution by Galerkin’s method, the equations of motion are rultiplied by the
variation of the displacements,3x, and the result integrated over the volume £ the shell (Ref-
erence 12). Since the integration over the thickness has already been performed in deriving
the equations, none of the factors is afunction of z. It is therefore sufficient to integrate over

the shell area, This ¢czn be written as follows:

ij; {SX}T [L] {x} aa =0

{19)

The displacements u, v, and w are periodic in ¢ with period 27 . Simple harmonic motion is

assumed and the displacements are written in the form of a product,

u:=U(x)cos mf)eiw'

(i6)

e et e s e s =
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V (x)sinng 't

Wix)cos nc,be"m

w

(17)

(18)

The form of the solution given previously separates the various Fourier components in
¢, since for each integer value of nthe functions in ¢ satisfy the differential equations (Equa-
tions 1 to 3,. It is further assumed that U, V, and W can be expressed as a series of functicns
& which satisfy the appropriate houndary conditions for u, v, and w.

M u
Uil =) A @ -
- J )

3=

M v
Vi)=Y B & (x)

- |

=1

i ]
Wix):= ) C, ij (=)

)=

(19)

(20)

(21}

Aj’ Bj' and Cj in Equations 19 to 21 are arbitrary constants, The displacement X can now be

written

5
T I~
< [
"
b
2
=
-
o
€
p=4
™Mz
m

The variation 8X can be written

N
cos nd)e'w' z

Su .
izl
N
twt
Sx = Sv z sin nd)e z
1=
\o‘ ‘ ' N
dw cos n¢p e ¥
iz

Equations 22 and 23 are substituted into Equation 15 and

f‘L’ {Su {L"u + lev +L|3w ]+ Sv [Lz'u+L22v+L23w

v
y (x) (22)

8A| (blu\x)

\

38, @; (x (23)

SC,' cb:' (x)
|

the integrand is expanded.

}+ Sw [L Y +L32H-L33w]}dA=O
{24)
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Substituting Su, v, and Sw from Equation 23 into Equation 24,

f'l;‘{cosn&#ei‘“t )'%l SAi CD‘: (x) [L" utl,, v +L'3w]
iz

+ “!'5 55 @
sinnge z B, & (x) [LZ,u +lo,v + L, w]

N

twt w r

+ cosngpe 2 8¢c; &) (x; lL3,u+L32v+L33 w]} dA =0 (25)
i

"
—

Since SAi, SBi, and SCi are arbitrary, the only way that the above equation can be identically
zero is that each integral vanish individually (Reference 12).

it u
ffcosn¢>e SAi ®i(x) [L“u+L|2v+L'3w ]dA=O 26
A
i=1,2, - N
1wt v
jj; sinnge SB' CD' tx ) [Lza utl,vHL,, w]dA=O (27)
iz1,2, N
iwt w
f_/‘; cosnde 80,@, {x) [L.“u+L32v+L33 w]dA=O (28)
iz1,2, N

Since SAi’ 8‘3i, BCi, and eu"t are independent of the coordinates of dA, these can be taken
out of the above integrals, to obtain

v r
ff cosng P (x) L v+l vHL W }dA=O i29)
h iz 1,2, N
ff s.nn¢d>:' (x)[iz,u+L22v+L23w]dA=O (30)
A ve 2, N
fj cosncf)(b:l (‘)[le utl v+l 55 W ]dAzo {(31)
A
=, 2, - N

The expressions for u, v, and w given by Equations 16 *o 18 are substituted intc Equations 23
to 31 with dA = ad$ dx and the integration performed on d¢. From the orthogouality of sin
n¢ and cos n¢h over the interval 0 to 27,

2w

f sin2n¢>d¢=1r (32)
0

2

f cos2n¢d¢ Bl {33)
0]
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2w
smn¢g cos ng d¢p =0 (34)
0

By using this orthogonality condition, Equations 29 to 31 reduce to the following form:

' i
I, +I,, +1,:0 =12, N (35)
i i " . .
U, +1,, +1,,:0 i: 1,2, N (36)
i ' i . .
1, +1', +1,,:0 i=1,2, N (37)

Where the terms in Equations 35 to 37 are as follows:

i 2

i u 2 d (I-v) 2 2 2 .
I" =‘({ Cbi (x){-u (I-q,);?+[—-2—— (l+k)—q']n -y w }de i=1,2,-'N {38)
. 2
I' = quj (x})|-na 4w d Vdx i=1,2, ---N (39)
12 0 ! 2 dx

i -flcbu( ){ [ + —Ql’ikz] 9 4k « }wa izl,2, N (40)
Its'o ; (xl{-a|v+a > n ey a A x iz1,2,

I -feqf' (x) Utv) d 1 4y i=1 2, N (41)
ZI- A . X [c.n > ax J X i= ,

I -fﬂdbv 'x){nz(l- )- 2[“'”) (143k)- ]—‘ﬁ— 2 "’}de =12 N (42)

22'0 v 4" 2 AES IR =le,

4 2 2
t v i o (3-v) d _
e @ Gofu-apn =222k S was oz, (43)
0
! fidf"( 1 { [ =v) 2, 19 _ .f_} .
Isl-c ; (x) qo v+q'- > " k] - -a k ) Udx i=1,2, -N (44)
£ 2

' w o n(3-u) &

1.2 @ (Ot -q)n- K Vdx i=1,2, N (45)

32.(/). i [ ! 2 dxz]

I f ' ){n— 2q +a° Ji+u[‘—£—2 2,2 4 + z«l)z]— 2 2} (46)

33-0 , na q, il /] " an pRE; n Yy & (Wd

i:1,2, N
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U, V, and W as given by Equations 19 to 21 are substituted into Equations 38 to 46. These
expressions are substituted into Equations 35 to 37 with N = M to obtain the following form

for the characteristic equation.

™ 12 IN ] [ 12 IN ]
K K -« -K Y, M M M Y,
21 22 2N
K k2% K Y, M2 M2 N Y,
i . 7,zwz .
| kNI N2 kNN] Yy MNE N2 L NN %
where the submatrices Kl] and Mu can e written
' U] | ]
DIl DIZ Dl3 Mll Y O
[/ - Ji i 1 T I
K D3, Dy, D,y , Mo 0 M), ©
] i) ij T J
Dy Dy, Dss Y 0 Mys

The terms in the D“, Mlj, and Yj submatrices are,

4 2
T u 2 r{l-v)
D, f P (x){—a (!—qz):d‘-é+[ (|+k)—q,]nz}d>;’ ( x) dx

0 2
D :fquU()["a(H-y) d]cp"
2 A \ x)| — 2 n"d—x- j(x)d)(
p" -flcb"( oo [4q- 2 0t -2 440 LN }& e
‘3-0 p (k- [v+a, > n » xa d‘s i x)dx
V4 all +v)n
T MTIRY R B S
DZI -{ qu (X)[ 2 ax ] dDj dx
i f@v [ 2 2 rlU=¥) o ] cz}cpv(
Dzz“{ ‘(x)‘n(l—q|)-o |_~—§—-— (1+3k) a, -;‘2‘ | x )dx
. 1 2 2
0o v o (3-v) d w
D,, -‘!; CPI (x)[(l—ql)n-—-—z——— kn —d;f-](bj { x)dx
D, -fICb'( {o[v+ Ao i) e
31-0 e |v+a z N " akaﬂ}j“)d‘
. I 2 2
i) w a n(3-v) d v
032-[)(bi(x)[(l—q‘)n--——-2———k;:-z-lq)j(x)dr.

47

(48)

(5i)

(s82)

(53)

(54)

(55)

{56)
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£ 2

i) 2 2 d a d 22 2_ 21y &
D33 '!;d)ih){l n“q,+aq, dx2+k{o . 2a n " +(n -1 ]} Cp} (x)ax (57)
" !
1} I U u
M“ =Jo dll (x?@} (2} dx (58)
‘i r'&a v v
My, =5 & (x)P (x) dx (59)
o ! !
I
U
M33 =j(; (bl (X) ®J (l) dx (60)
-
Y, : B, (61)

,?C
. )

A solution is obtained by selecting a series of displacement functions CIDu(x), cbv(x), and

wa(x) for U(x), V(x), and W(x) respectively which satisfy the sppropriate bouudary conditions

for the shell, Integrals (Equations 49 to 61) are evaluated and the various KIJ and MY matrices
given by Equation 48 are formed ancd substituted into Equation 47 which can he solved by stan-
dard eigenvalue techniques,

If the series of displacement functions selected for ®"x), & (x), and D" (x) each form an
orthogonal set, the generalized mass matrix MY in Equation 47 wiil be diagonal.

One set of functions which can be used for the series of assumed displacem2nts P are the
beam functions, whica satisfy the following differential equation:

4
d
¢ - k¢ =0
dx*®
The functions, P, taken as the assumed modes, satisfy various combinations of the following
boundary conditions at x = 0, and x = £

(62)

d:0 (63)
d:o0 164)
d:o0 (65)
d -0 (66}

The heam functions satisfying Equation 62 for various combinations of the boundary con-
ditions (Equations 63 to 66) are orthogonal. Integrals of ths beam functions and their deriv-
atives have been evaluated by Felgar, and formuizs for these integrals are given in Ref~

erence 3. In general, the terms in the matrix k! given by Equatiots 49 to 57 involve integrals

of combinaiions of Cbulm, Cb\i("), and ;% which may be different functions. These are not
tahulated. One approach wouldbe to evaluate the varicus integrals in Equations 49 to 57 numer-
ically. This would allow an independent choice of the functicon {0 represent each of the functions
U{x), V{x), and W(x).
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Figure 1. Cocrdinate System
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SECTION III
SOLUTION FOR THE FREELY-SUPPORTED CYLINDER

An exact solution can be obtaiued for the vibration of a cylindrical shell with axial loads
aad internal prescurization for the following boundary conditions:

w =0 M x:0, 4 167)
v = 0 ot x:0,7¢ (68}
M :0 at x:0,¢ (69)
N7 O at «: 0,4 (7o)

The boundary conditions corresponding to Equations 67 to 70 are satisfied if the functions
U, V, and W satisfy the following conditions at x = ¢ and x =.¢:

dV
— e 1
ax (o] {7}
\ = 0 {72)
ol w
W= —% ¢ 0 {73)
dx

These bourdary conditions are satisfied by the following normalized displacemant functions:

u

QJm ix) = /2 cos mv;x (73)
v - LUK SR

(bm (z) = /2 sin 7 {75)

P (1= ST sin ﬂ;”‘ 176)

Tne previous sine and cosine functions are orthonormal on the interval 0 to 27 and bave the
:ollowing properties:

Z H i r 4 [
fo (JZ cos';x) (./Z cos—-'—“’;-x—-) dx ={ ';', (%) (77
f — ; . /(,i:; .
Jr(j (f'd sm‘—’é—f)(\/—é— sm’q’;’( )dx :{0.|¢i {78)
fl (,/2 sin (s ) ( J2 cos T ) dx = 0 (79)
0 £ 2

For this case the various integrals iz Equations 49 to 60 are zero for i # j and reduce to the
foliowing for i = j = m,

mm 2 _-

Dy = a” Ui-uy) () I+[U_21_)(,+ks_ql],.21 (80}
mm {(+ ) mw

D'? : - ‘—2"- (T—) n,l "_BI)

12
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(1—
ng: -a{v*“h - 2” an] ("‘BW) 2_“3(",‘;’)31 (62
mm —all+y) , mm
Uay ° 2 (E ) nl o
_ 2
D':zm: n? tt-gq, ) L+ df [—(-I-Z—Q (i+ 3k ‘Qz] (-"\_[W—) 4 (©4)
2 2
mm a (3-v) mir
D,y = (1—q, ) nk 4 > { f) kn 4 (85)
o < ~alv wa, UG ] (A1) 20t (2T o6
31 ! 2 V4 J 4
2 —- 2
D'::‘:U—q‘)n.E"' OR(Z v ) K (ml”) 1 (87)
2 z N
o™ [,_nz a, +k(nZ-1) ]I+(202n2k-azq2) (—’“I”—)lﬂa‘ ("7 £ (88)
M':m y (89)
M;nzm - £ {90)
Mr;}m = f (91)

The expressions giver by Equations 80 to 91 are substituted into Equation 47 to obtain the
following:

K (o] (0} Yy M 0 0 /Yy
0 K* Y, 0 M2 Y,
. o . C .
. . - yzu,z ) ) (92)
L NN NN
0 U K YN o ¢ ] ‘(N
or
(K" yzu)zll“) c - - 0 Y, \
0 (Kzz—yzszzz) Y, (
. .y = 0 {93)
. 2, 2NN l s
0 (K -y 2 Yy

11
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LEguation 93 is of a diagonal form und consists of the direct sum of 2 x 3 submuatrices, this
indicates that an exact solution exists for the assumed functions selected, For u non-tiinvial
solution,

" 2 2,0
K-y w™ M)
22 2 2 22
(K™= y " w M 7))

=0 (94}
(kNN —waZMNN )
Applying the Laplace expausion to the above,
] 2 2 .1 i 22 2 2 221 d PN
K—waiIK—wazl- !KNN—)’Z(‘JZ MNK =0 (35,
or

I mm 2 2 mm

|K -y w M l:O m=12, N (96
mm 2 2 mmy !

[K -y W M ]iYm}=O m:=1,2, N (37}

The expressions for K" and M are substituted into Equation 97, The resulting express.on
is divided by Z, and y2w2 and q, (—mjw—) are taken to the right-hand side. A non-dimensionil

wavelength parameter A is introduced, and the following result 1s ohtarned:

m m m ; N
[-Dn D2 Dis s Am ( s Am l
m m m .2 2 2 . .
Dz‘ D22 023 ) Bm Hy w qz)‘ ) ' Bm {38)
m m m
LD D D J tc Cm
3 32 33 Soom m:1,2, - N
where
.. Mmwa
IXN - "‘2-"_‘"' ( 99)
{(l-y) . 1
b, = X +[ 15 (+k)—q,| o (.00
All+y)
D7 Dy = = =5 n (1an)
(1—v) 3
DB=03|=—)\{y+q -3 kn]—k)\ {:02)
o2 W2 (1—-v) ']
Dozin’li=a ) + X [~ (14 300] (193)
12
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2
023=1)32 : (l--q|)n+ -—uzé——v—)kn {104)
033=[I—nzq|+k(n2—%)2:|+2nzx)\2 + kN (105)

In Equation 38 the vibration frequencies and axial load parameter are combined to form a
single eigenvalue expression, This is discussed in more detail in Section IV,

If wis assumed to be rero in Equation 98 these equations are identical to those given by
Flugge :n Reference 4 for the huckling of a cylindrical shell subjected to an axial load and
internal pressure. If the axial loac parameter ¢, and internal pressure parameter q, are

assumed to be zero 'n Equitivn 98 these equations are comparable to those obtained by Arnold
and Warburton (Refereace 1). Small differences which occur are in terms conta:ning the
thickress te radius paranicier k whicnis sialifor cvlinders for which the thin shell eguations

apply.

Once the mode rumbers are selected, the values uf the Li' terms can be esaluated for a given

shell having *he assumed boundary conditiors and « given icad of g . This is accomplished by

assigning integer values to n and tom (in A = H}Tra) which represent the number of circum-~

ferential waves and the axial half-waves respectively.

A solution can be obtained by solving Equation 98 by matrix iteration or by reducing Equa~
tion 98 to a determinant form and solving the resulting third order characteristic equation,

lo, — az]:0, Brly 2w+ qp ) (106)
or
|
I 0, -4 Dy, Dy
lD:a D, 78 Dy, | =0 (1o7)
D5 D, A |

After expanding,
2ol ( D..D, ~D2 - D& -Doy)=D, D,,D
i (D) +D,5+D43) +A (D, Dyt Dy Dygt DypDyy = Dy '3 23 i Y22 YVss

2 2 -
- ZDI2 0'3 023 + Dn 022 + D, D,y + 023 D, - 0] ( 108)

Three values of A can be obtained from Equation 108 indicating that three frequencies exist
for each of the assumed mode shapes, This result has been previously reported by Arnold and
Warburton (Reference 2) and others. These various frequencies are associated with different
values of the amplitude ratios %
C > A, B and the motion is radial or in the z direction. The other two values of frequency are
usually associated with motion that is tangential, B > A, C w'iere the primary displaceinent 1s
v,or longitudinal vibration, where A> B, C and the u displacement predominates. it is noted that
tor the cylindrical shell this coupling between displacements exists,

and —gl i'or one value of the frequency, usually the lowest,

13




AFFDL-TR-67-28

For the non-axisymmetric modes (n # o) the values of A can be determined from Equa-

tion 108 and the amplitude ratios -“}-and B can be obtained from

C c
{
‘_D“-A D\, Dys \ A
Dy, B,—A D,s e :0 (109)
05 0,3 Dyy -8 )\ ¢ \,
Solving Equation 109 for the amplitrie ratios yields
0
-Ei (Dzz- A ) - 023
A 12 {110)
c (D =AND 22~ A)
D —
12 Dy,
0, D
__E________ZS -(D33" A )
B . Orz ()
c z

LT
D3 - D,z 22— 4

A coupling between the three displacements u, v, and w exists for the non~-axisymmetric modes,

. ‘e . . . -
For the special case of arisymmetric motion with n = o, the terms D1 2 DZi' D23, and 1)32

in Equation 98 are zero, and the tangential displacement v can be uncoupled from the axial
and radial displacements, With n = o, Equation 98 can be written as two equatjons

m m N
f Dy, Dis Am 2 2 2 Am L
. {(112)
|_ om { l Uy w +q, X))

m Cm
13 033 \C"‘) ™
m=1 2, - N
2 2 2 R \
[Dzz—(y w +q2)\)] Bpn =0 (113}
m= 1,2,

Setting the determinants of Equations 112 and 112 equal to zerc and expanding gives:

2 2 .
A - (D" + 033) A+ D“ 033— DI3 =0 {114)

A = 022 (115}

Equation 115 represents the eigenvalue for pure torsional vibration, aund Equation 114 cou-
pled radial and axial vibration eigenvalues, The amplitude ratios for the latter are given by

—Dy3

(1i6)
(D” —A)

A
i

14
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SECTION IV
VIBRATION AND BUCKLING RESULTS FOR AXIAL LOADING

It was shown in Section III that for the specific case of a freely-supported cylinder, the
various terms in the series of assumed modes uncouple, indicating that an >xact solution was

obtained. The frequency parameter 72w2 was combined with the product of the axial load pa-
rameter g, and the square of the axial wave parameter A\ to form a single eigenvalue

expression &(XA, n),

AN = yPe® 4+q, N (17)

The expressions Dij which make up the coefficients of the characteristic equation contain

the shell parameters v and k , the wave parameters n and X\, and external pressure parameter
q,- The parameters w and 9 appear only in the parameter A. When integer values are as-

signed to the number of circumferential waves n and axial half-waves m, the mode shape is,
in effect, specified and solution of the appropriate characteristic equations vields the
eigenvalues for that mode. Some typical mode shapes are shown in Figure 2, It is noted that
for the bhoundary conditions considered, the eigenvalues A(A, n) canbe obtained without spec-
ifying a value for the axial load parameter 9. The eigenvalues obtained depend on the internal

pressure, however, since the coefficients of the characteristic equations contain the parameter
q,.
1

In this Section, the effects of internal pressure are neglected and 9 is considered to be

zero. I the parameter 4, is zero, the eigenvalues obtamed for the snecified mode cor-

respond to the values of the vibration frequency parameter y w” for the shell with no axial
loading. The circular frequency for the unloaded shell 1s w .

A (A,n) =42 wg (i18)

From the three values of A (A, n) associated with each mode, the vi%: ation frequencies,
Wy for radiai, longitudinal, and torsioual vibration having the specified mode shape can be

determined for a zero value of axial load. These results correspond to those obtained in
Reference 1.

The characteristic equation (Equation 108 or Equations 114 and 115) for the axisymmetric
modes (n = 0) was solved for a range of radius to thickness ratios from 20 to 5000, For large

values of the radius to thickness ratio (%= 2000, 5000) and large values of —;f:, one of the roots

was quite small (A <<1). In this case, greater accuracy was obtained by solving the smaljest
eigenvalue using only the linear terms of Equation 108, The results are given in Figures 3
through .6 for the first eigenvalue which is radial deformation (C >A, B). Figure 17 gives the
results for the second eigenvaiue, and Figure 18 the results for the third eigenvalue. The
results for the axisymmetric case (rn = 0) are given in Figure 19,

A single figure covers the range of radius to thickness ratios from 20 to 5000 for modes
corresponding to the second and third eigenvalues. Since the results are independent of the
radius to thickness ratio, hending effects are relatively unimportant as compared to stretching
or membrane effects. The changes in the eigenvalue spectra with various values of radius to
thickness for radial deformaticn indicate that these modes involve primarily bending effecs,

15
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Two curves are given for each radius to thickness ratio for radial deformation. In one cuse

2

Vv A is plotted versus the a.nal wavelength parameter T for dafferent values of n or number

of circumferential waves, and in the other case VA 1s plotted versus n for different values

of ?n%i' For a given cylinder the ratio f!S fixed. By assignng integer values to m in the pa-
rameter ﬁ% the values of /E for various modes can be determined from the figures. Since

Vb is equal to YW for 95 = ¢, the natural vibration frequencies for the unloaded sheli can
be obtained from these figures.

For modes having one circumferential wave (n =1) the amplitude of the radial and tangential
displacements corresponding to the lowesteigenvalue are approximately equal and greater than
the axial displacement for valuesof E’i > 3.5 and the deflection shape 1s similar to beam bend-~
ing with little deviation from a circular cross-section. This is consistent with the results re-
ported by Forsberg (Reference 6).

It was shown in Section IIl for the axisymmetric case {n = 0) that the torsional displacement
uncouples from the radial and axial displacements, One of the eigenvalues corresponds to
pure torsional vibration while the other two involve coupled radial and axial motion,

A simple expression for the torsional vibration can be obtained using Equations 115 and
103,

2

After solving w_ and substituting y, Equation 119 reduces to
0

m T JE (1 + 3k)
° £ NM2pli+v)

For small values of k, (k <<1), this can be written

mT / E
wo = [ 2p(|+l¢’) “2|)

m=12,

Equation 121 is the same recsuit one would obra:n for the torsional vibration of a clamped-
clamped tube starting with the following differeniial equation

2 2

y w I

* . °© .y :0 (122)

dx GJ
For the freely-supported cylindrical shell aboundary conditionof zero tangential displacement
was assumed at both ends of the sheli which corresponds to clamped ends for torsion ¢f a
hollow shaft or tube.

The lowest eigenvalue for the axisymmetric modes 1is associated with radial deformation

(C>A) for a value oi-r-n%< 2. The lowest eigenvalue 1s associated with torsional vibration for

£
ma
to 7, the iargest eigenvalue corresponds to radial deformation (C >A). The lowest frequency

values of the parameter >2. For values of ré greater than a value approximately equal

16
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of wasymmetric vibration for a treely-supported cylinder with m_é_wr corresponds to pure

torisonal motion. The lughest frequency corresponds to radial motion (Figurc 19). This result
was reported by Forsberg 1n Reference 6.

£

For small values of ha and low values of n the second eigenvalue yields amplitude ratios
(B>A, C) while modes having larger values of éand n have amplitude ratios (A>B, C). Thus
the second eigenvalue corresponds to torsional vibration for some modes and axaal vibration
for other modes, as indicated in Figure 17. In Figure 18 a similar result is obtained for the
third eigenvalue,

It can be seen from the figures that for the freely-supported cylinder under consideration,
the lowest vibration frequency is associated with radial vibration for non-axisymmetric modes
except for long cylinders with one circumferential wave, Among the various radial vibration
frequencies the lowest value ior the unloaded shellis obtained for one axial half-wave (m = 1).

This leads to the largest value of m%a . The number of circumferential waves associated with

the lowest radial vibration frequency 1s a function of the shell geometry or length to radius
4 a
a h
the number of circumfzrential waves in the munimum frequency vibration mode.

ratio = and radius to thickness ratio . The larger the ratio of radius to thickness the greater

For non-axisymmetric vibration frequencies corresponding to the second and third
eigenvalues, the lowest frequencies are obtained for modes with one axial half-wave as in the
case of radial vibration, and increase as the number of half-waves increase. The number of
circumferential waves associated with the lowest frequency, however, for a given number of
axial half-wa~es is one and the frequency increases as the number of circumferential waves
increases. Thus for non-axisymmetric vibration corresponding to the second and third
eigenvalues, the lowest frequencies are those for one circumferential wave, and one axizl
half-wave, aud may involve either motion which is axial or torsional depending on the velue

of ;aé icr a given shell, For cylinders with a value of { < 2 the second eigenvalue corre-

sponds to torsional vibration and for cylinders with§>2 to axial vibration (Figure 17).

If the frewuency is assumed to be zero, the eigenvalues for any mode are the values of the
buckling parzmeter q, for that mode. From these eigenvalues the axial loading for buckling

giver the symbol 9,4 Can be determined for the specified mode

B CN,n)za, A2 (123)

The three eigenvalues & (A, n) associated with each deflection mode correspond to buckling

deformations which are radial, axial, or tangential. The lowest eigenvalue for non~
axisymmetric modes is associated with buckling which involves radial deformation except
for the modes with one circumferential wave.

Since the eigenvalues for a given mode shape can be obtained without specifying a value for
q,z the values A(i, n) in Equation 123 for the buckling lcads are the same as those for the

circular frequercy of an unloaded cylinder, Equation 118, or the vibration of a cylinder loaded
below the buckling value, Equation 117, In addition the amplitade ratios A/C and B/C are the
same for the various displacements.

17
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Both sides of Equation 117 can be divided by A(), n) to obtain

2 2
y w +q2)\2

| = (124)
A(N,n)
or
72 wz . qz )\2
AN ) A, nl 125)

After substituting for A(A, n) in Equation 125 from Equations 118 or 123 the following
result is obtained:

w 2 4,
o - —
( wo) qzo (IZG)
or
2, 2 [ - 32\
W W T,y ) (127)

Equation 127 shows for a given cylinder, and for the values of A(\, n) associated with a
given deflection mode, that the square of the vibration frequency varie. linearly with the axial
load, or axial load parameter - For positive values of 9 (compressive loading) the square

of the vibration frequency w varies linearly from its value for po axial loading, Wy to zero
at the buckling load 9y = Gy A compressive loading beyond this peint would lead to imaginary

frequencies and indicate that the cylinder was statically unstable for that deformation mode
and loading. MNegative values of 9, correspond to a tensile loading and increase the natural

vibration frequencies for 2 given mode.

The relationship between the vibration frequencies and axial load given by Equation 127
was obtainable because the deformation mode shape for natural vibrations and buckling are
the same for the particular boundary conditions considered. The frequency and axial load
parameters were combined into a single eigenvalue expression.

The lowest buckling mode, or minimum value of %0 is generally not associated vith a mode

shape having one axial half-wave as is the case for the minimum vibration frequency for no
axial load. It is shown in Equation 123 that the minimum buckling load % is associated with

the minimum value of A—)ﬁz—@- For a given number uf axial half-waves, m, the lowest vibration

frequency and the lowest buckling load have the same number oi circumferential waves, n.

The buckling values % for axial compression are ohtained from Equation 123 after the

eigenvalues have been obtained from Equation 198 for non-axisymmotric modes (n # 0) and
Equations 114 and 115 for axisymmetric modes. The buckling results obtained are the same
as those of Flugge (Reference 4) since the equations are identical. Sin-e only the buckling
envelope 15 given in Reference 4 for various radius to thicknese ratios, the con.plete buckling
curves are plotted in Figures 20 through 36 for use with Equations 126 and 127.

The various eigenvalues were obtained from solution of the cubic equation except where
the linear solution gave greater accuracy for the lowest root.

18
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The buckling results for axial compression are plotted in Figure 20 for the axisymmetric
modes. The results for buckling involving radial deformation are given in Figures 21 through
34 for radius to thickness ratios from 20 to 5000, Figure 35 is a plot of the buckling values
corresponding to the second eigenvalue and Figure 36 is a plct of the buckling values corre~
sponding to the third eigenvalue. As in the case of free vibration each plot for the second and
third eigenvalue contains both torsional deformation and axial deformation. A single figure
for each case covers the range of radius to thickness ratios from 20 to 5000 for these higher
buckling values, indicating tha: bending -ffects are unimportant for these medes.

Since buckling modes with one circumnferential wave have the lowest eigenvalue, as in the
vibration case, the amphtude ratio for radial and tangential displacements approaches -1,
These displacements are larger than the axial displacement for values of—é{; >3.5. These
buckling modes are similar to cclumn buckling with little deviation from the circular cross
section. In Reference 4 Flugge shows that the buckling values for this mwde approach the
Euler column values asymptotically for large values of ﬁlﬁ'

For the case of axisymmetric buckling (n = 0) due to an axial lvad, Figure 20 shows that

for values of m—la<2 the lowest buckling value is associated with radial deformation, If the
values of E—% >2 the lowest axisymmetric buckling value involves tcrsional deformation. As

in the vibration case, the torsional displacementuncouples from the radial and axial displace-

ment for the axisymmetric modes. The expression for this pure torsional buckling due to
axial load can be written,

P (i—v)
For values of k <<1 this can be approximated
~ P U-n
q2°= D = 2 (l29)
or
h
p 2 (130)
201+ )

in terms of the axial load per unit length on the cylinder boundary. In Equation 129 it is shown
that the value of %o for torsional buckling due to an axial load is a constant for a given cyl-

inder. This also is shown in Figure 20,

While values of the buckling parameter Yo for various modes corresponding to the second

and third eigenvalue are unimportant from a stability standpoint they are plotted in Figures 35
and 36 for use with Equation 126 or 127, As in the vibration case the minimum buckling values
for the second and third eigenvalues, for the non-axisymmetric modes, occur for one circum=-
£

{erential wave and sn-all values of o

or a large number of axial half-waves.

The vibration frequencies for freely-supported cylinders with an axial load can be deter-
mined by using Figures 20 through 36 and Equation 126 or 127, These equations are valid
for any of the three eigenvalues for a given detormation mode. For a given cylinder it would
be necessary to select a mode of interest by assigning inieger values to n and m, and calcu-
lating a value for -—mp—a. After determining whether radial, torsional, or axial vibration 1s of
interest the values of wo and 1o can be deterrained trom the appropriate charts for that

19
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particular n and E%i . The value of the paramster 9, for the applied Joading can be calculated

and the new frequency w or the frequercy ratio (-‘;‘-’—) can be calculated from KEquation 126 or
0

127, If the shell is subjected to an axial tension loading, a negative value for q,, is used in
the formulas which yields an increase in frequency,

t can be seen that the greatestchange in frequency occurs in those mades having the lowest
buckling values %o

20
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SECTION V

BUCKLING RESULTS FOR EXTERNAL PRESSURE

The buckling values f~r a freely-supported cylinder subjected to only external pressure can
be obtained by setting the parameters q, and w equalto zero in the various terms of the char-

ll acteristic determinant and separating the terms containing 9 from the expr.ssions DIJ n

Equation 98. The external pressure parameter ¢, is given the symbol q, , to indicate that it
- . 1 10
is the buckling value.

(H), - qy “z) Hi2 (H3—qo A) (A

Hiz (Hyp- qon° ) (Hpz=a, n) 2 g ; =0 (131)

(H|3"Q|o X) (H C

2
zs—qlon ) (H33—q|° n )

Expressions for the various terms Hij can be obtained by subtracting the q, terms from
the expressions for Dij in Equaticas 100 through 105,

For a non-trivial solution, the determinant of ti:2 3 x 3 matrix above must be zero. After
expanding this determinant and collecting like powers of 9, the following third order char-

acteristic equation for buckling due to external pressure is obtained:

3(_6 ,,2 2, & 2 [ 4 _,.2 2
q’o[ n +AX n" +n ]+q'°[n (H“+H22+H33)+2H‘2n)\ 20" AH 3=\ Hy,

.3, _ 2 2 2, .2 . 2 2
2n Hyy-n H, ]+q,°[—n (Hy Hapt H Hyg HH  Hygd 0" (H 3 +H, +Hy4)

“2H (0 H HAH ) +2h H Hyp + 20 H,, st]"’ Hy HaaHyz +2H;; Hi3 Hps

2 2 2 ,
13 Hap —Hpp Hyy —HyyHy =0 (132)
Equation 132 is valid only for non-axisymmetric modes {(n>0). As in the case of vibraticn and
buckling due to an axial load, the characteristic equation for buckling due to external pressure
is a cubic equation, and three buckling values, 9y’ Can be obtained. The expressions for the

amplitude ratios for the various buckling values are

(sz_qlo"z ) (Hi3-a,0A)

— (Hox —=Q,n0 )
A Hia 23 10
?: 2 3 (133)
(Hpp—aio 0"} (H,, -q;on”)
12 Mg
2
(Hyy= qon ) (H, —qqon")
8 Hee (134
—_ 1
¢ (Hy -qion? ) (Hy, —a,g n?)
He - A,z
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As for both vibration and buckling due to axjal 'oad, the non-axisymmetric modes involve a
a coupling between the three displacements u, v, and w,

For some modes, the solution of Equation 132 yielcs one negativc and two positive buckling
values. The negative value for %0 indicates buckling due to internal pressure, since a positive

value for %0 corresponds to external pressure. In those cases where a negative buckling
value was obtained for %0 there were two buckling values for the given mode which had
primarily radial deformation. One of these was associated with the negative value of %0 and
the other with the lowest positive value for % ¢ The only exception is for modes baving one

circumferential wave, where for long shells the radial and tangential displacements were
approximately equal and both were greater than the axial deformation (CaB>A), which would
represent “beam modes’’ for the cylinder. In the cases where three positive values were
obtained for q;, One corresponded tc radial deformation (C>A, B) one to tangential deforma-

tion (B>A, C) and one to axial defermation (A>B, C).

The lowest positive buckling values for 95 (external pressure) for various modes are

plotted in Figures 37 to 50 for various values of radjus to thickness from 20 to 5000, There
are two figures for each radius to thickness ratio. In one figure 9y i8 plotted versus the
2

axial waveiength parameter ha for various values of n, and in the other %o is plotted versus

the number of circumferential waves, n, for various values of —nﬁ . A value of the lowest buck-

ling load for the various modes was obtained from the cubic characteristic equation, Equa-
tion 132, and also the linear form of this equation, and the more accurate result plotted in the
figures. This was determined by substituting each result back into Equation 132 and checking
the residual. For small values of %0 associated with radius to thickness ratios from 2000 to

5000 and values of Ynia > 5, the linear equation generally gave greater accuracy for the lowest

root. This is because of the numerical accuracy which was obtained from the digital computer
program used to obtain the roots of the cubic equation. As for both vibration and huckling due
to axial load, the lowest values of the character stic equation were generally associated with
deformation which was primarily radial and the results were dependent on the radius to
a
h

The modes having one circumferential wave do notappear in Figures 37 through 50 because
the buckling values for external pressure for these modes are higher than for modes with two
or more circumferential waves. The lowest buckling value for external pressure decreases

A
ma
9y 0° is associated with a mode having one sxial half-wave, since this leads to the largest

thickness ratio — indicating that bending effects are important for these cases.

as the parameter increases, indicating that for a givencylinder the lowest buckling value,

value of ?’: 3 For the large values of 'n%z the lowest buckling values for external pressure
£ 4e-
ma 9
creases the rumber of circumferential waves associated with the lowest buckling value in-
creuses. These results were obtained by Flugge (Reference 4), using only the linear terms of
the characteristic equation. Flugge points out that the linear form of the characteristic equa~
2

are associg ed with two circumferential waves (n = 2). As the value of the parameter

tion n=2 and A= 0, where \= -%La. gives & value of 3k for q,, where k = b

12a

5 indicating

that the curve for n = 2 is asymptotic to 3k for large values of -ﬂ%.
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The buckling results for external pressure for modes having one circumferential wave are
given in Figure 51 for values of% from 20 to 5000. Two buckling values were obtained for
external pressure and one negative buckling value for %0 which represents internal pressure.
For values of Tﬁ% < wthere are two buckling modes which iavolve radial deformation, with the
value for external pressure lower than the value for internal pressure. There is also a higher
buckling value for external pressure which involves torsional deformation. The buckling values
appear to be a function of the ratio of radius to thickness for 'ﬁf'a <1, and are essentially the

same for values of %irom 20 to 5000 for—!‘i% >1.

Flugge (Reference 4), in working with the linear form of the characteristic equation, points
out that the buckling load %o for this case changes from positive to negative at ;—éa =7, with
the negative values associated with ma ™ In Figure 51, where all three buckling values are
shown, it can be seen that the bucklingcurve for internal pressure crosses thz buckling curve
for external pressure ati% = 7. Thus the lowest buckling load, qyo» OCcurs for external

'ﬁf‘a <7 and internal pressure fovTﬁ—a> w. For values of 'n%x) 7 the buckling

results for internal pressure have an amplitude ratio B/C which is approximately -1, indicating
that the amplitude of the radial and tangential displacements are approximately equal and both
are larger than the axial deformation. This represents deflection with little distortion of the
cylinder cross section and would represert ‘‘beam modes’’ for the cylinder.

pressure for

For values of—r?)‘%>4 the lowest buckling value for external pressure represents axial de-
formation, Thus, for values of ?n%>4 the buckling value for internal pressure was a ‘‘beam
mode?’’, while the lowest buckling value for externii pressure involved axial deformation, and
the second buckling value for external pressure, torsional deformation.

For the case of axisymmetric buckling (n = 0 modes) due to external pressure, the terms
le and }123 in Equation 131 are zero, and the tangential displacement v can be uncoupled

from the axial and radial displacements as for both vibration and buckling due {0 axial load.
Equation 98 can be written as two equations for these modes,

H, His=Aqy A
(135)

His - Aqy, Has ¢
sz 8 = O (|36)

The uncoupled equation for torsional deformation, Equation 136 has only the trivial solution
B = 0, indicating that axisymmetric torsional buckling does not exist for a freely-supported
cylinder subjected to external pressure,

The determinant of the 2 x 2 matrix in Equation 135 is expanded to form the quadratic
characteristic equation for the axisymmetric case,

qfo OF) —a,,(2XhH )+ u.'3 ~H, H_ =0 (137)
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The amplitude rutio involves only coupled radial and axial displacement for this case,

RaNLT Sl RL (138)

c H,

The huckling values for external pressure obtained from Equation 137 are plotted in Figure 52.
One positive value for %o and one negative value for gy Were obtained for range of radius to

thickness ratios from 20 to 5000 and the range of the axiai wavelength parameter, -&—%from

.2 to 15. The lower buckling value is for external pressure. For small values of k, (k<<1),
2

h 7 and ‘for A= 0, where A =;n—1%34 Equation 137 yields the following values for
12a

where k =

90’
q s -y *1| {139)

This gives a buckling value for external pressure of 90 = 1- v, and a buckling value of
Q0 = -1-r, which represents internal pressure, for lung thinshells, If Poissoa’s ratio,y, were
zero, the buckling value for internal and external pressure would be 1. In Figure 52 it is
shown that these simple buckling values appear to be valid for values of% from 500 to 50090
fc;r the full range of _rr::% examined (.2< ';‘fz < 15), and for values of% from 20 to 100 for

—>1,
ma

The buckling values for internal pressure for all modes are shown in Figure 53. These
buckling values are associated with radial deformation, except for n = 1 with x—:;> 7, which
represents the ‘‘beam mode’! as previously discussed. The mcdes with two circumferential
waves yield a negative value for %o for -Ié <1, which appears to get very large asi% ap-
proaches 1. For a value of—-n-% >1, Equation 132 gave only positive buckling values for % ¢o-
Similarly for three circumierential waves, a negative buckling value could be obtained for
x—fg <.4 and ail values of % examined, but at 'x—n%
Although it is not shown on the figure, a large negative value for Qo Was obtained for four

circumferential waves for ?fi = .2, while for all vaiues of ma 2,25 only positive buckling

2.4 only positive values are obtained for ql o

values q,, Were obtained.

The second positive buckling value for extermal pressure is plotted in Figure 54, and the
third positive buckling value is plotted in Figure 55. As for both vibration and buckling due w0
axial load, the second buckling value for external pressure involves torsional deformation for
some modes and axial deformation for the rest. A similar result is obtained for the third
buckling value for external pressure. The second and third positive buckling values were
essentially the same for all radius thickness ratios from 20 to 5000, indicating the predomi-
nance of membrane effects. In Figure 55, which gives the third buckling value, the curves for

n=2, 3, and 4 were st~-ped até—a =1, .4, and .25 respectively, since a third positive value
for %, did not exist for the next increment—n% below these values,
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SECTION VI

THE VIBRATION OF FREELY-SUPPORTED CYLINDERS
SUBJECTED TO AXIAL LOAD AND EXTERNAL PRESSURE

It was shown in Section IV that the axial load parameter, q, can be combined with the fre-

quency parameter, w, to form a single eigenvalue expression, while the internal pressure
parameter o, appears in the coefficients of the resulting characteristic equation, An exami~

nation of the expressions Dij' givenin Equations 100 through 105, which appear in Equation 98,

reveals that the term -qln2 appears on the main diagonal of that equation. These terms can

be moved to the right-hand side of Equation 98 and combined with the cigenvalue expression
as was done with the parameter 4, The factor q, also appears in the terms 013 and 023.

indicating that the coefficients of the resulting characteristic equation would still be a function
of the external pressure parameter q,- With these changes, Equaiion 98 can be written

m m Lm
Hu le (d,s—q. A) A Apm
2 2y 2w+, N 2 (140
H:; Hz2 (Hg; -q n) Bm =y w +GZX tq,n ) <{Bn )
m m X
(H3-q, A) (Hgy -q, 2) H 5y Cm con

where the terms H.. are given by subtracting the q, terms from the expressions for D.. (Equa-
tions 100 to 105). 1
1f the value of 9, is small in the expressions for H13 and H23. the parameter q, can be

dropped from the left-hand side of Equation 140 without affecting results significantly. With
this simplification, a new eigenvalue expression A(\, n) would resuit

A ()\,n)=(y2wz+q2 )tz+q'n2) (141}

The eigenvalues A(\, n) would be the same as A()\, n) of Section IV because the coefficients
Hij in Equation 140 are the same as the Dij with q = 0.

A buckling value, Gy o* Can be obtained from Equation 141 by setting w and q, equal to zero.

2

B (A,n): A(X,n) zq n (182)
o - A 143

n
if the approximation discussed in Section IV is assumed to be valid, an expression similar to

Equations 124 and 125 which include the effects of both axial load and internal pressurization
can be obtaincd.

w 2 % 9 .
(“’o) = | (i44)
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or

2 2 q, 9,
= w *w | = — o ———— {145)
0 ( %o % )
Equations 144 and 145 indicate that the square of the vibration frequency for a freely-
supported cylinder varies linearly with both axial load and internal pressure for a given
deformation mode. For buckling due to combined loads, Equation 145 can be written

|:.6_L+— (146}

2
These results are shown in Figure 56. The line (a“-'-)= 0 represents buckling of the cylinder.
0

Thus the cooxdinates of any point on this line represent combinations of axial loading and
external pressure necessary to buckle the cylinder in a given mode. Similarly the line

(,‘:L)z: 0.5 would represent the combinations of axial load and external pressure which reduce
[¢]

the square of the vibration frequency to a value of one half that for the unloaded cylinder. The
2
line(-‘%i) = 1 represents coinbinations of axial load and external pressure for which the vibra-
(¥

tion frequency remains unchanged.

The results obtained for bucklng due to external pressure in Section V indicate that for
some mo-ies negative buckling values are obtained, which correspond to buckling due to internal
pressure. With Equaiion 143, however, only positive buckliag values could be obtained zince
all the eigenvalues (A, n) are positive. Thus, buckling values obtained using Equation 143
could lead to significant errors for some modes 1f the actu.l results for 90 obtained from

the buckling equations of Section V are used in Equations 144 or 145 rather than the values
given by Equation 143, the problems arising from the negative buckling values wouid be al-
leviated. The use of the true values for q10 obtained from the buckling equations, €ssentially
q
forces Equations 144 and 145 to ke correct at -q—l— =1, In addition, use of the actual buckling
10
results for %4 was found to exterd the range ot vaiidity »f Equations 144 and 145 considcrably,

that is, the equations were found to be valid where the buckling value was of the same order
of magnitude as ».

It is proposed that Equations 144, 145 cr Figure 56 be used together with Figures 3 through
55 to obtain values for the vibration frequencies or buckling values for freely-supported cyl-
E inders subjected to ax:al loading and external pressure, For a given freely-supported cylinder,

the ratio of length to radius,—f and radius {o thickness, % would be fixed. A particular mode of
interest could be selected by assigning integer values to the number of circumferential waves,
n, and the number of axial half~waves, m, in the parameter m&oa' It would then be necessary to

establish which of the eigenvalues associated with the particular mode shape 1s to be examined;
that is, whether radiai, torsional, axial, or in some cases, the ‘‘beam’’ modes are of interest.
The values of Wye G0 and %, for the particular mode of interest can be obtained from the

appropriate figure. If a given axial ioading or external pressure is specified, a value for the

s
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parameter q, or q, can be calculated. With this information the vibration frequency or reduc-

tion in frequency can be obtained from Equation 144, 145, or Figure 56. For combined buck-
ling results either q, or q, could be taken as the unknown (o be determined. The greatest

change in vibration frequency occurs for those modes having the lowest buckling values g, ,
and %0 which are usually those involving primarily radial deformation.

No simplification or approximations, other than those inherent in the original differentizl
equations or in the assumption of the form of the solution, are associated with the axial load
effects, discussed in Section IV. The simplifications made in arriving at Equations 144 to 146
or Figure 56 involve only the external pressure effects. The range of validity, or errors re-
sulting from use of the procedures previously outlined, were determined by comparing these
results with those cobtained by using Equation 98 or 108 with all of the 9, terms retained. To

avoid errors arising from reading the figures, the digital results, used in plotting the figures,
were used in this error analysis. Calculations were made for the full ~ange of the various
parameters involved,

Buckling calculations were made for values of pressurization equal to -.3q10. .3qm. .6q1°
and 1.4q10 for various modes. The value of %0 used in the calculations was that which was
smallest in absolute value for that mode. In some cases this was a negative value, associated

with internal pressure. The valuesof % for buckling associated with the above pressurication
0

values were determined by the two methods. A comparison of these resulis was made for G,

1, 2, 5, 10, and 20 circumferential waves, values ofa‘%i equal to .2, .5, 1, 5, and 10, and for

radius to thickuness ratios from 20 to 5000. Since the linear relationship between the sguare

of the vibration frequency arnd axial load was established without any approximatiovs, the

relative error in%— for combined buckling would be the same as for the square of the vi-
0

bration frequency wz for 1hadings less than tne buckling values.
In general a comparison of the results indicates that for the bulk of the cases examined the

difference in the values obtained for -q—z— were less than 1% of %o The largest discrepancy
0
occurred for the axisymmetric modes (n = ¢, and for modes with one circumferential wave,

The results for the axisymmetric modes are shownin Figure 57. The plotted points represent
q. q
the correct results. The two methods prodiice the same results at"-l-L =0 and-(f‘—- =1, The
18 10
greatest discrepancy occurr=d for % = 2% and E{;a = .2, whichwould represent a relatively thick

short cylinder. The results for -nﬁ = § wore essentially the same for all values of the radius
to thickness ratio examined and procduced the smallest discrepancy.

The error is generally less ac n increases. Figure 58 shows a comparison of the results
for modes with one circumferential wave, Agrin the largest discrepancy occurs for%=—* 20
and n—ﬁ = .2, For values of _ﬁ%a 2 5 the error was Jess than 2.3%; of %0 for ail values of radius

to thickness.
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The results for two circumferential waves are shown in Figure 59. For values of Eﬁ equal

w .5 and 1, the errors ranged from .59 to 6.8% of q20 for all values of the radius to thickness

ratio. For values of T‘%g 5 the errors were much less than 1% for all values of the radius to
thickness ratio.

q
at—-—l- = -3,

For five circumferential waves the errorfor 2 = 20 and L 2was 1.7 of 9,
h 0 90

q q q
92% of a4 atéo = .3, 1.05% of g, at ‘ﬁ_o = .6, and 2.39% of g, at c—};) = 1.4, and were less
1

less than 1% for all other values of—lfé-and -:1 and in most cases substantially less than 1%.

For modes having 10 and 20 circumferential waves the results were found to agree to well

. . £ a
within 1%, for the entire range of e and W
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LOAD TO BUCXLING VALUE

RATIO OF AXIAL

RATIO OF PRESSURE LOADING TO BUCKLING VALUE -%L'
10

Figure 56. ruduction in Vibration Frequencies for Combined Effects of Axial Load and
Pressurization
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RATIO OF AXIAL LOAD TO BUCKLING VALUE —2
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q
RATIO OF PRESSURE LOADING TO BUCKLING VALUE-E-'!‘;

Figure 57. Comparison of Combined Buckling Resulis for Axisymmetric Modes. (n = 0)
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920

RATIO OF AXIAL LOAD TO BUCKLING VALUE —2.

RATIO OF PRESSURE LOADING TO BUCKLING VALUE%
!

Figure 58. Comparison of Combined Buckling Results for Modes with One Circumferential
Wave. (n - 1)
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RATIO OF AXIAL LOAD TO BUCKLING VALUE
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RATIO OF PRESSURE LOADING TO BUCKLING VALUE-atB

Figure 59. Comparison of Combined Buckling Results for Modes with Two Circumferential
Waves (n = 2)
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SECTION VII
RESULTS AND CONCLUSIONS

“quations are formulated which can be used to determine the vibration and buckling char-
acteristics of cylindrical shells with various homogeneous boundary conditions under axial
loading and a constant external pressure. A method of solution is outlined which makes use of
a series of beam finctions for the radial, tangential, and axial displacements, which satisfy
the appropriate bourdary conditions involving these displacements.

Using a series of functions known to be an exact solution to the problem for the freely-
supported cylinder the equations reduced to those obtained by Flugge for the buckling of a
cylinder subjected to axial loads and a constant external pressure, if the frequency is assumed
to be zero. If the axial load and external pressure parameters are assumed to be zero, the
equations reduce to a form similar to those obtained by Arnold and Warburton for the natural
vibrations of a freely-supported cylinder,

An investigation was made of the vibration and buckling characteristics for the fresly-
supported cylinder under axial loading and external pressure, since an exact solution was
shown to exist for this case. The results discussed in the remainder of this Section are
associated wiuh this solution.

The characteristic equations for natural vibrations, buckling due to axial load, and buckling
due to external pressure were solved for a range of cylinder raaius to thickness ratios from

20 to 5000, for values of the parameter 'zﬁ‘% from .2 to 15 and for all circumferential waves
from 0 to 20. The vibration and buckling results are presented in a series of figures,

For the freely-supported cylinde- the problem reduces to the solution of a cubic character-
istic equation, except for the axisymmetric modes, indicating that three eigenvalues exist for
each mode. A particular mode involves an integer number of circumferential waves and axial
half-waves. These ecigenvalues are associated with various amplitude ratios for the radial,
axial, and tangential displacements, indicating tkz! these displacements are coupled. For
vibration or buckling under axial loading three pocitive eigenvalues are obtained for a given
mode and are associated with deformations which are primarily radial, axial, and torsional.
For long cylinders having one circumferential wave the amplitude of the radial and tangential
displacement approaches a value of -1 for one of the eigenvalues. This represents the ‘‘beam’’

modes for the cylinder, where the cylinder deflects with little distortion of the circular cross-
sectics.,

For buckling due to external pressure a negative eigenvalue is obtained for some modes,
which corresponds to buckling due to internal pressure. In this case the negative eigenvalve
and one of the positive eigenvalues for that mode are both associated with deformation which
is primarily radial.

For the axisymmetric mode (n = 0), the tangential displacement uncouples from the axial and
and radial displacements. For the natural vibration case and buckling due to axial load, the
uncoupled torsional displacement gives rise to a pure torsional vibration or buckling mode.
Two eigenvalues are associated with the coupled radial and axial displacements. For buckling
due to only external pressure, the uncoupled torsional deformation has only the trivial solu-
tion, and only the two eigenvalues associated with coupled radial and axial displacement
can be obtained.

87

TTT—




PR

AFFDL~-TR-67-28

The eigenvalues associated with radial deformation were generally dependent on the radius
to thickness ratio%, whereas the eigenvalues asscciated with axial or torsional deformation
were independent of the radius to thickness ratio for values of -g-from 20 to 5000,

The third order characteristic equation, the resulting eigenvalues, and amplitude ratios
for the vibration of an unloaded cylinder and for buckling due to axial loads are identical. The

eigenvalues A(A\, n) represent the frequency parameter y w for the unloaded cylinder and
40 k for the buckling problen.

For the vibration of freely-suppcrted cylinders under axial loads less than the buckling
value, the frequency parameter y w2 and a.xlal load parameter 4, )\ can be combined to form
a single eigenvalue expression, A(\,n) =7y w + 4, )\2 The eigenvalues can be obtained
without specifying a value for axial load. For this problem the square of the vibration frequency
for any mode was found to vary linearly with axial load.

The vibration frequency for any mode and axial loading can be obtained by knowing only the
vibration frequency of an unloaded cylinder, w o and the value of the buckling parameter U
for that mode. The relationship between these parameters is given by Equation 127

w?: w? (1~ qq:o ) (127)

The values for w o and q,, can be ob‘ained from the figures, where both values should be

for deformation which is either radial, axial, or torsional. All vibration frequencies decrease
for a compressive axial loading and increase for a tensile axial loading, For a given axial
loading the relative change in vibration frequency is greatest for those modes having the
lowest buckling values %0

For the non-axisymmetric modes (n # 0), the lowest natural vibratiou frequencies and
lowest buckling values for axial loading for a given mode were associated with deformation
which was radial except for long cylinders and modes with one circumferential wave where
the ““beam’’ modes produced the lowest values,

The lowest vibration frequency for the unloaded cylinder has one axial half-wave. This is
generally not the case for the lowest buckling mode for a cylinder under axial load. It appears
that the lowest natural vibration freguency and the lowest axial buckiing load, for a given
number of axial half-waves, have the same number of circumferential waves. The number of

circumferential waves depends on the value of the parameter ?'néa and the radijus to thickness
ratio 3.

The lowest vibration frequencies for the unloaded cylinder for torsional and axial vibration
were the axisymmetric modes (n = 0) with one axial half-wave. The frequencies increase as
the number of circumferential waves ard the number of ax:al hal®-waves increase.

The lowest natural vibration frequencies for the axisymmetric modes (n = 0) are associated

with vibration which is radial {ox values of _n%i < 2 and pure torsional for values of % >2.
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The equation for the uncoupled axisymmetric torsional vibration frequency is givea by
Equation 121,

L& S A - 12
“o £ '\/Zp(i+u) mel2 - tzh

The only assumption used to obtajn this equation was that the ratio of thickness to radius
is small compared to 1.

The lowest axial loading buckling value for axisymmetric modes also involves radial
deformation for xfpé < 2, and pure torsional deformation for"l'ﬁ"a > 2. The buckling value for
the axisymmetric, pure torsional mode is given by Equation 129

P _U-v)
Yo =T Tz (129)

with the assumption that the ratio of thickness to radius is small compared to 1. This axial
load, 950 is independent of the length of the cylinder and the number of axial half~waves in
the mode shape.

For the buckling of a freely-supported cylinder due to a pressure loading, the axisymmetric
modes and modes with one circumferential wave have buckling values, %0 which are much

higher than those for two or more circumferential waves, For modes having from 0 to 4 cir-
cumferentisl waves, one negative buckling value is obtained, which corresponds to buckling
due to internal pressure. For the axisymmetric modee and modes with one circumferential
wave, a negative buckling value is obtained for the full range of the parameter-—'e— from .2 to
15, For modes having two circumferentiz! waves, a buckling value for internal pressure exists
only for values of -i < 1, For modes with three circumferential waves, a buckling value for
internal pressure exists only for values of -i < .4. For modes with four circumferential
waves a buckling value for internal pressure is obtzined only for _r;_xga = .2, This negative

buckling vaiue is quite large.

For modes having one circumferential wave, the lowest buckling value results for external
pressure with radial deformation for values of x—;% < 77, and internal pressure with a ‘‘beam’’

£

mode type deformation for values of R

For the buckling of a freely-supported cylinder due to a constant pressure loading in an
axisymmetric mode (n = 0) the buckling values %0 involving coupled axial and radial deforma-

tion are given by Equation 139 for large values of E{E

= -yt (139)

Numerical calculations for the range of radius to thickness ratios from E 20 to 5000 indi-
cate that Equation 139 canbe used for values of —-‘g > 1. The deformation associated with thege

results is rad.al. Both the positive and negative buckling loads had the same numerical value
for the ratio of the radial deformation to axial deformation and were of opposite sign.
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For freely-supported cylinders subjected o bLoth axial loads and a pressure loading, the
gquare of the vibration frequency for a given deformation mode was found to vary essentially
linearly with the pressure loading as well as the axial load for many modes. This relation-
ship is given by Equation 145,

42 q,
w *w {— —_ (145)
¢ ( 920 %0 )

where w o' 920 and 9, 8re the nztural frequency of the unloaded shell, buckling value for
axial load, and buckling value for a pressure load, for a given deformation mode,

The errors introduced by this linear relationship are evaluated for a wide range of sheli
modes covering the full range of the shell parameters. Equation 145 was found to give poor
results for the axisymmetric modes and modes with one circumferential wave, For modes
with two circumferential waves the results were within 7% of the correct values for all modes

examined for values of 5?!5 > .5. The discrepancy decreases ag the number of circumferential

waves in the mode shape increases. Buckling values for a combined axial and pressure loading
can be obtained by setting w equal to zero in Equation 145,

For those modes having only positive buckling values for external pressure, external
pressure decreases the vibration frequency and iniernal pressure increases the vibration
frequency for that mode. For those modes having negative buckling values corresponding tc
internal pressure, the vibration frequency appears 'o increase with external pressure and
decreases with internal pressure if the negative buckiing value is smaller in magnitude than
the other external pressure buckling values for that moce.
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SECTION VIII
(ECOMMENDATIONS

The figures contained in this report can be used directly to obtain the natural vibration
frequencies, buckling values for axial loading, and buckling values for external and internal
pressure for freely-supported cylinders. The vibration frequencies can be obtained for
cylinders subjected to axial loads, and approximatc resulis can be obtained for freely~
supported cylinders subiected to both axial load and external pre.sure.

Arncld and Warburton (Reference 2) suggest the use of vibration resulis for the freely-
supperied cylinder for cylinders with other boundary conditions by relating these to an equiv~
alent freely-supported cylinder. Equivalent wavelength factors were obtained from experi-
mental vibration results for cylinders with different types of supports and are given in
Reference 2, Through the use of the concept of an equivalent freely-supported cylinder, the
figures and formulas presented could be used to obtain preliminary design values for the
vibration frequencies for loaded or unloaded cylinders as well as buckling values for combined
loadings for cylinders with various boundary conditions,

I the concept of an equivalent freely-supported cylinder is valid for buckiing results as
well as for vibration frequencies, the linear approximation between the square of the vibration
frequency and axial load and external pressure may also be valid, If this is the case, vibration
tests could be conducted in comnection with static buckling tests to achieve nondestructive
testing. By recording vibration frequencies at various increments of load it may be possible
to exirapolate to the buckling values without damaging costly test specimens or actual
hardware,

Since the natural vibration frequencies for cylinders are sensitive to both boundary condi~

tions and imperfections, it may be possible toobtain better correiation between buckling tests
by using experimental vibration frequencies as an index of imperfection or support restraint.
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